GROTHENDIECK-TEICHMÜLLER THEORY AS A SPECIES OF TEICHMÜLLER THEORY [JOINT WORK IN PROGRESS WITH TSUJIMURA] (NGR2025 VERSION)

SHINICHI MOCHIZUKI (RIMS, KYOTO UNIVERSITY)

October 2025

https://www.kurims.kyoto-u.ac.jp/~motizuki/GT%20as%20Tch%20 (NGR2025%20version).pdf

- §1. Ring-theoretic interpretation of complex Teichmüller theory
- §2. The case of inter-universal Teichmüller theory (IUT)
- §3. GT via genus zero quotients
- $\S 4.$ Decomposition groups and function spaces

§1. Ring-theoretic interpretation of complex Teichmüller theory

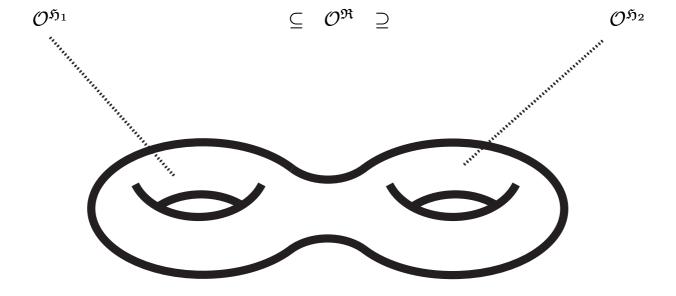
· Review of classical complex Teichmüller theory: (cf. [EssLgc], Example 3.3.1)

Recall the most fundamental deformation of complex structure in classical complex Teichmüller theory: for $\lambda \in \mathbb{R}_{>1}$,

Classical complex Teichmüller theory on Riemann surfaces: More generally, on a <u>single (oriented) topological surface</u> S, we can start with one <u>holomorphic structure</u> \mathfrak{H}_1 on S and a <u>square differential</u> relative to \mathfrak{H}_1 , then form the <u>Teichmüller dilation</u>, or <u>Teichmüller map</u>, obtained by deforming (i.e., in the fashion described above) the canonical holomorphic coordinate obtained by integrating the square root of the square differential (along paths) so as to obtain a <u>new holomorphic structure</u> \mathfrak{H}_2 .

Next, for i = 1, 2, write $\mathcal{O}^{\mathfrak{H}_i}$ for the sheaf of <u>holomorphic functions</u> on S, rel. to \mathfrak{H}_i ; $\mathcal{O}^{\mathfrak{R}}$ for the sheaf of (complex valued) <u>real analytic fns.</u> on S.

Here, we note that for connected open subsets $U \subseteq S$, $\mathcal{O}^{\mathfrak{R}}(U)$ is a <u>domain</u>, i.e., unlike the case with continuous or \mathcal{C}^{∞} -functions. That is to say, $\mathcal{O}^{\mathfrak{R}}$ is in some sense <u>close</u> to being like $\mathcal{O}^{\mathfrak{H}_i}$, for i = 1, 2, but still <u>suff'ly large</u> as to allow one to obtain <u>embeddings</u> in the <u>common container</u> $\mathcal{O}^{\mathfrak{R}}$:



· In the remainder of the present talk, we would like to consider various <u>arithmetic analogues</u> of the function theory discussed above in the complex case.

§2. The case of inter-universal Teichmüller theory (IUT)

- · A more detailed exposition of IUT may be found in
 - · the <u>survey texts</u> [Alien], [EssLgc] (cf. also [IUTchI-IV], [IUAni1], [IUAni2]), well as in
 - the <u>videos/slides</u> available at the following URLs:
 (cf. also my series of <u>DWANGO LECTURES</u> on IUT

 URLs available at request!):

https://www.kurims.kyoto-u.ac.jp/~motizuki/ExpHoriz IUT21/WS3/ExpHorizIUT21-InvitationIUT-notes.html

https://www.kurims.kyoto-u.ac.jp/~motizuki/ExpHoriz IUT21/WS4/ExpHorizIUT21-IUTSummit-notes.html

· Let R be an $\underline{integral\ domain}$ (e.g., $\mathbb{Z} \subseteq \mathbb{Q}$) equipped with the action of a $\underline{group}\ G$, $(\mathbb{Z} \ni)\ N \ge 2$. For simplicity, assume that $N = 1 + \dots + 1 \ne 0 \in R$; R has $\underline{no\ nontrivial\ N-th\ roots\ of\ unity}$. Write $R^{\triangleright} \subseteq R$ for the $\underline{multiplicative\ monoid\ R} \setminus \{0\}$. Then let us observe that the $\underline{N-th\ power\ map}$ on R^{\triangleright} determines an $\underline{isomorphism\ of\ multiplicative\ monoids}}$ equipped with actions by G

$$G \curvearrowright R^{\triangleright} \stackrel{\sim}{\to} (R^{\triangleright})^N (\subseteq R^{\triangleright}) \curvearrowleft G$$

that does <u>not arise</u> from a <u>ring homomorphism</u>, i.e., it is clearly <u>not compatible</u> with <u>addition</u> (cf. our assumption on N!).

Let ${}^{\dagger}R$, ${}^{\dagger}R$ be <u>two distinct copies</u> of the integral domain R, equipped with respective actions by <u>two distinct copies</u> ${}^{\dagger}G$, ${}^{\dagger}G$ of the group G. We shall use similar notation for objects with labels "†", "‡" to the previously introduced notation. Then one may use the <u>isomorphism of multiplicative monoids</u> arising from the <u>N-th power map</u> discussed above to <u>glue</u> together

$${}^{\dagger}G \ \curvearrowright \ {}^{\dagger}R \supseteq ({}^{\dagger}R^{\triangleright})^N \quad \stackrel{\sim}{\leftarrow} \quad {}^{\ddagger}R^{\triangleright} \subseteq {}^{\ddagger}R \ \curvearrowleft \ {}^{\ddagger}G$$

... where the notion of a <u>gluing</u> may be understood
· as a <u>quotient set</u> via identifications, or (preferably)
· as an <u>abstract diagram</u> (cf. graphs of groups/anabelioids!)

the $\underline{ring} \,^{\dagger}R$ to the $\underline{ring} \,^{\dagger}R$ along the $\underline{multiplicative\ monoid}$ $(^{\dagger}R^{\triangleright})^N \stackrel{\sim}{\leftarrow} {}^{\dagger}R^{\triangleright}$. This gluing is $\underline{compatible}$ with the respective actions of $^{\dagger}G$, $^{\dagger}G$ relative to the isomorphism $^{\dagger}G \stackrel{\sim}{\rightarrow} {}^{\dagger}G$ given by forgetting the labels "†", "‡", but, since the N-th power map is $\underline{not\ compatible}$ with $\underline{addition}$ (!), this isomorphism $^{\dagger}G \stackrel{\sim}{\rightarrow} {}^{\dagger}G$ may be regarded either as an isomorphism of (" \underline{coric} ", i.e., $\underline{invariant}$ with respect to the N-th power map) $\underline{abstract\ groups}$ (cf. the notion of " $\underline{inter-universality}$ ", as discussed in [EssLgc], §3.2, §3.8!) or as an isomorphism of groups equipped with actions on certain $\underline{multiplicative\ monoids}$, but \underline{not} as an isomorphism of (" \underline{Galois} " — cf. the $\underline{inner\ automorphism\ indeterminacies}$ of SGA1!) groups equipped with actions on $\underline{rings/fields}$.

- The problem of <u>describing</u> (certain portions of the) ring structure of ${}^{\dagger}R$ in terms of the <u>ring structure</u> of ${}^{\dagger}R$ in a fashion that is <u>compatible</u> with the <u>gluing</u> and via a <u>single</u> algorithm that may be applied to the <u>common</u> (cf. <u>logical AND \land !) <u>glued data</u> to reconstruct <u>simultaneously</u> (certain portions of) the ring structures of <u>both</u> ${}^{\dagger}R$ and ${}^{\dagger}R$, up to suitable relatively mild <u>indeterminacies</u> (cf. the theory of <u>crystals</u>!) seems (at first glance/in general) to be <u>hopelessly intractable</u> (cf. the case of \mathbb{Z})!</u>
 - ... where we note that here, considering <u>portions</u> is important because we want to <u>decompose</u> the above diagram up into <u>pieces</u> so that we can consider <u>symmetry</u> properties involving these pieces!

One well-known elementary example: when N = p, working $\underline{modulo\ p}$ (cf. $\underline{indeterminacies}$, analogy with $\underline{crystals}$!), where there is a $\underline{common\ ring\ structure}$ that is $\underline{compatible}$ with the p-th $power\ map$!

Another important example: Faltings' proof of <u>invariance</u> of <u>height</u> of elliptic curves under <u>isogeny</u>, under the assumption of the existence of a <u>global multiplicative subspace</u> (cf. [ClsIUT], §1; [EssLgc], Example 3.2.1)!

- ... This is precisely what is <u>achieved in IUT</u> by means of the <u>multiradial representation for the Θ -pilot</u> via
- · anabelian geometry (cf. the abstract groups ${}^{\dagger}G$, ${}^{\ddagger}G!$);
- · the p-adic/complex logarithm, Galois eval. of theta functions;
- · <u>Kummer theory</u>, to relate <u>Frob.-/étale-like</u> versions of objects.
- $Main\ point$:

The <u>multiplicative monoid</u> and <u>abstract group</u> structures (but <u>not</u> the ring structures!) are <u>common</u> (cf. "<u>logical AND \land !</u>") to \dagger , \ddagger and can be used as the <u>input data</u> for an algorithm to construct the <u>multirad. rep. for the Θ -pilot</u>, i.e., a <u>common container</u> for the distinct <u>ring strs.</u> (i.e., "<u>arith. hol. strs.</u>") \dagger , \ddagger

$$^{\dagger}R \subseteq \left(\text{multirad. rep. for the }\Theta\text{-pilot}\right) \supseteq {^{\ddagger}R}$$

When $R = \mathbb{Z}$ (or, in fact, more generally, the <u>ring of integers</u> " \mathcal{O}_F " of a number field F — cf. the multiplicative <u>norm map</u> $N_{F/\mathbb{Q}}: F \to \mathbb{Q}$), one may consider the "<u>height/log-volume</u>"

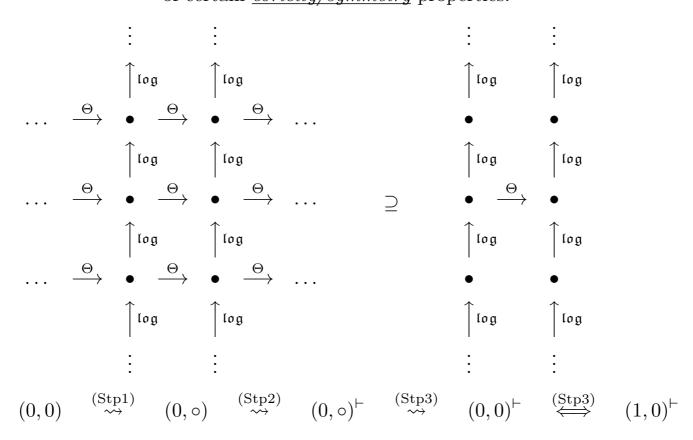
$$\log(|x|) \in \mathbb{R}$$

for $0 \neq x \in \mathbb{Z}$. Then the <u>N-th power map</u> of (i), (ii) corresponds, after passing to <u>heights</u>, to <u>multiplying real numbers by N</u>; the <u>multiradial algorithm</u> corresponds to saying that the height is <u>unaffected (up to a mild error term!)</u> by multiplication by N, hence that the <u>height is bounded!</u>

· In the case of IUT, the <u>multirad. rep. for the Θ -pilot</u> is obtained by means of a sort of "<u>analytic continuation</u>" along a certain "<u>infinite H</u>" of the <u>log-theta-lattice</u> (cf. the discussion surrounding [EssLgc], §3.3, (InfH))

... where

- the Θ -link between distinct ring strs. "•" corresponds to the N-th power map discussed in the present $\S 2$, while the $\underline{\log}$ -link locally at nonarchimedean valuations looks like the p-adic logarithm between distinct ring strs. "•";
- · the <u>descent operations</u> revolve around the establishment of certain <u>coricity/symmetry</u> properties.



- which involves a gradual introduction via "<u>descent</u>" operations of "<u>fuzzifications</u>", corresponding to <u>indeterminacies</u> (cf. the discussion of [EssLgc], $\S 3.10$).
- At a more technical level, the <u>multirad</u>. <u>rep</u>. <u>for the Θ-pilot</u> is obtained by constructing <u>invariants</u> with respects to the <u>log-link</u>, which has the effect of <u>juggling addition and multiplication</u> i.e., juggling the <u>dilated</u> and <u>non-dilated</u> portions of the <u>ring strs</u>. and, as a result, effects a sort of "<u>miraculous rotation</u>" (the discussion of [EssLgc], §3.11)

of the

- · "<u>mysterious log-volume-dilating Θ -link gap</u>" (between the domain/codomain of the Θ -link) onto the
- · "<u>harmless log-volume-preserving log-link gap</u>" (between the domain/codomain of the log-link)!

§3. GT via genus zero quotients

(cf. [CbGT]; [CbGal]; [ArGT], §2, §3)

The following result in <u>combinatorial anabelian geometry</u> on the <u>faithfulness</u> of the natural outer action of GT on the <u>genus</u> <u>zero quotient</u> of the geometric fundamental group of the tripod is the <u>key technical result</u> that underlies our new results on GT:

Let

- \cdot K be a field of characteristic 0;
- $\cdot \overline{K}$ an algebraic closure of K;
- · X a hyperbolic curve of genus 0 with r cusps over K.

Write Π_X for the étale fundamental group of $X_{\overline{K}} \stackrel{\text{def}}{=} X \times_K \overline{K}$;

$$(\Pi_X \twoheadrightarrow) \quad \Pi_X^0 \stackrel{\text{def}}{=} \quad \Pi_X / \left(\bigcap_H H\right)$$

— where $H \subseteq \Pi_X$ ranges over the open subgroups of Π_X corresponding to genus 0 finite étale coverings of $X_{\overline{K}}$, and we recall that $\operatorname{Ker}(\Pi_X \to \Pi_X^0) \neq \{1\}$ (although, by a classical result of Ihara-Anderson, "= $\{1\}$ " holds in the pro-l case) — for the genus zero quotient of Π_X ;

$$\operatorname{Out^C}(\Pi_X)$$

for the group of outer automorphisms of Π_X that map *cuspidal inertia* subgroups to cuspidal inertia subgroups;

$$\operatorname{Out^{C}}(\Pi_{X}) \to \operatorname{Out}(\Pi_{X}^{0})$$

for the natural homomorphism (since elements of $\operatorname{Out}^{\mathbb{C}}(\Pi_X)$ stabilize the class of open subgroups "H" considered above).

Now suppose that the $type\ (0,r)$ of X is equal to (0,3), i.e., that X is a tripod, and that $K=\mathbb{Q}$. Thus, as is well-known ("Belyi injectivity"; the definition of GT), we have natural injections

$$G_{\mathbb{Q}} \quad \hookrightarrow \quad \mathrm{GT} \quad \hookrightarrow \quad \mathrm{Out}^{\mathrm{C}}(\Pi_X)$$

such that the composite homomorphism

$$G_{\mathbb{Q}} \longrightarrow \operatorname{Out}(\Pi_X^0)$$

is *injective* (cf. [Wtbe]). Then the <u>key technical result</u> referred to above generalizes this injectivity to the case of GT:

Theorem A [Expected] (Faithfulness of natural outer action of GT on the genus zero quotient). The natural composite homomorphism

$$\mathrm{GT} \quad o \quad \mathrm{Out}(\Pi^0_X)$$

is <u>injective</u> (cf. [ArGT], $\S 3$).

The proof of Theorem A yields an independent proof of the main result of [Wtbe] referred to above and involves applying highly technical results from combinatorial anabelian geometry (cf. [CbGT], [CbGal]) concerning the <u>sequence of configuration space groups</u> (i.e., étale fundamental groups of the base-change to \overline{K} of various configuration spaces X_n associated to X)

$$\dots \twoheadrightarrow \Pi_{X_{n+1}} \twoheadrightarrow \Pi_{X_n} \twoheadrightarrow \Pi_{X_{n-1}} \twoheadrightarrow \dots$$

and the associated $\underline{sequence\ of\ fiber\ subgroup-preserving\ outer\ automorphism}$ \underline{groups}

$$\dots \xrightarrow{\sim} \operatorname{Out}^{\mathrm{F}}(\Pi_{X_{n+1}}) \xrightarrow{\sim} \operatorname{Out}^{\mathrm{F}}(\Pi_{X_n}) \xrightarrow{\sim} \operatorname{Out}^{\mathrm{F}}(\Pi_{X_{n-1}}) \xrightarrow{\sim} \dots$$

for arbitrarily large positive integers $n \geq 3$ (cf. [CbGT], Corollary C). Here, we note that the passage $X_n \rightsquigarrow X_{n+1}$ corresponds, at "<u>toral</u>" (i.e., "<u>multiplicative</u>"!) nodes, to a passage to <u>tripods</u> (i.e., which involve "<u>additive</u>" symmetries $t \mapsto 1 - t$), hence may be thought of as a sort of <u>combinatorial</u> analogue of the <u>p-adic logarithm</u> — cf. the role played by

the <u>vertical columns of log-links/absolute p-adic anabelian geometry</u> in the construction of the <u>multiradial rep./"miraculous rotation"</u>

$$\Theta$$
-link " \curvearrowright " log-link

of IUT in $\S 2$, which is obtained by forming <u>invariants</u> with respect to the <u>log-link</u>, which constitutes a rotation

addition "
$$\boxminus$$
" " multiplication " \boxtimes ".

The other main technical tool used in the proof of Theorem A is the following *elementary variant* of (the argument in the first half of the proof of) *Belyi's Theorem*:

Write $L \stackrel{\text{def}}{=} \mathbb{Q}(t)$, where t is an indeterminate. Let \overline{L} be an algebraic closure of L, $f \in \overline{L}$. Thus, f may be thought of, via the standard coordinate on the projective line, as a point $\in \mathbb{P}^1_L(\overline{L})$. Then there exists a "Belyi map"

$$\mathbb{P}^1_L \to \mathbb{P}^1_L$$

— i.e., a dominant morphism over L that maps the point corresponding to f to an L-rational point of \mathbb{P}^1_L and, moreover, is unramified outside a finite set of L-rational points of \mathbb{P}^1_L .

§4. <u>Decomposition groups and function spaces</u> (cf. [CbGT]; [CbGal]; [RNSPM]; [ArGT], §4, §5)

· We maintain the notation of Theorem A of §3 and consider <u>distinct conjugates</u> of $G_{\mathbb{Q}}$ inside GT $(\ni \sigma, \tau)$

$$G_{\mathbb{Q}}^{\sigma} \qquad \subseteq \operatorname{GT} \supseteq \qquad G_{\mathbb{Q}}^{\tau}$$

$$(\leadsto \overline{\mathbb{Q}}^{\sigma}) \qquad (\leadsto \overline{\mathbb{Q}}^{\tau})$$

- ... that is to say, <u>distinct ring theories</u> (where "~" denotes <u>canonical anabelian reconstruction</u>, as in [CbGal]) that are related by a <u>mysterious non-ring-theoretic</u> i.e., <u>purely combinatorial/group-theoretic</u> <u>link</u>;
- ... the (possible) <u>non-algebraicity</u> of $\sigma \cdot \tau^{-1}$ may be understood as a sort of "<u>profinite dilation</u>" that plays the role of the <u>complex dilations</u> of $\S 1$, or, alternatively, of the <u>N-th power</u> $\underline{map/\Theta-link}$ of $\S 2$.
- · Just as (noncuspidal) points $\in \mathbb{P}^1_{\mathbb{Q}}(\overline{\mathbb{Q}})$ determine (up to Π_X conjugacy) i.e., by considering stabilizers of liftings of these
 points to points of universal profinite étale coverings of X $\underline{(G_{\mathbb{Q}}\text{-})decomposition\ groups}}$

$$D_{\mathbb{Q}} \subseteq \Pi_X \overset{\text{out}}{\rtimes} G_{\mathbb{Q}} \overset{\text{def}}{=} \operatorname{Aut}(\Pi_X) \times_{\operatorname{Out}(\Pi_X)} G_{\mathbb{Q}}$$

that map isomorphically to open subgroups of $G_{\mathbb{Q}}$, we would like to consider "<u>GT-decomposition groups</u>" (or, more generally, "<u>G-decomposition groups</u>" for some closed subgroup $G \subseteq GT$, i.e., by restricting from GT to G)

$$(D_G \subseteq) \ D_{\mathrm{GT}} \ \subseteq \ \Pi_X \overset{\mathrm{out}}{\rtimes} \mathrm{GT} \ \overset{\mathrm{def}}{=} \ \mathrm{Aut}(\Pi_X) \times_{\mathrm{Out}(\Pi_X)} \mathrm{GT}$$

that map *isomorphically* to open subgroups of GT, by applying the technique of <u>combinatorial arithmetic Belyi cuspidalizations</u> (which may be constructed in a <u>purely combin./group-theoretic</u> fashion — cf. [CbGal], §3):

$$\begin{array}{ccc} U & \stackrel{\text{open imm.}}{\hookrightarrow} & X \\ \downarrow & & \\ \downarrow & \\ X \end{array}$$

... which leads us to the following ...

Fundamental Injectivity/Conjugate Synchronization Problem: Given an arithmetic field $F \subseteq \overline{\mathbb{Q}}$ (such as \mathbb{Q} or $\overline{\mathbb{Q}} \cap \mathbb{Q}_p$) such that $G_F \subseteq G \subseteq G$, is the <u>restriction map</u>

$$D_G \mapsto D_G|_{G_F}$$

<u>injective</u>?

... $\stackrel{\text{(essentially)}}{\iff}$ (since D_G is det'd by $\{D_G|_{G_F^{\sigma}}\}_{\sigma\in G}$) are the

$$D_G|_{G_F^{\sigma}}$$

synchronized, as $\sigma \in G$ varies?

<u>Construction</u>: If this <u>FICSP-property</u> (\Leftarrow <u>COF-property</u> of [CbGal], §3) holds for G, then for any <u>genus 0</u> fin. étale covering

$$Y_{\overline{\mathbb{Q}}} \to X_{\overline{\mathbb{Q}}},$$

one can use G-decomposition groups to construct

- · the <u>set of points</u> (i.e., $Y_{\overline{\mathbb{Q}}}(\overline{\mathbb{Q}}) \subseteq \mathbb{P}^1_{\overline{\mathbb{Q}}}(\overline{\mathbb{Q}}) = \overline{\mathbb{Q}} \cup \{\infty\}$) and
- the <u>field structure</u> (via the \mathfrak{S}_3 <u>symmetries</u>, i.e., $t \mapsto t^{-1}$, $t \mapsto 1 t$, etc.) on this set of points (i.e., on $\overline{\mathbb{Q}}$),

hence also a natural <u>function space</u>

$$\operatorname{Fn}(Y_{\overline{\mathbb{Q}}}(\overline{\mathbb{Q}}), \overline{\mathbb{Q}}),$$

together with a <u>subring of algebraic functions</u> (by considering <u>standard coord.</u> <u>fns.</u> — cf. the "<u>degree one</u>" <u>theta fn.</u> in IUT!) in this function space and a natural $\underline{\Pi}_X^0 \overset{\text{out}}{\rtimes} G$ -action (i.e., if we allow the genus 0 finite étale covering $Y_{\overline{\mathbb{Q}}} \to X_{\overline{\mathbb{Q}}}$ to vary).

- ... That is to say, we obtain that the natural outer action of G on Π_X^0 has <u>algebraic monodromy</u>, i.e., that the natural homomorphism $G \to \operatorname{Out}(\Pi_X^0)$ <u>factors</u> through $G_{\mathbb{Q}}$, which, by Theorem A of §3, implies that $(G_F \subseteq)$ $G \subseteq G_{\mathbb{Q}}$.
- ... In particular, by applying this argument to <u>closed subgroups</u> $G \subseteq GT$ that contain $G_{\mathbb{Q}}$, we obtain the following result:

Theorem B [Expected] (Concise characterization of $G_{\mathbb{Q}}$ in GT). Let $G \subseteq \operatorname{GT}$ be a closed subgroup that contains $G_{\mathbb{Q}}$ and satisfies the above FICSP-property ($\longleftarrow COF$ -property of [CbGal], §3). Then (cf. [ArGT], §4)

$$G = G_{\mathbb{Q}}.$$

That is to say, we obtain a <u>much simpler/more concise characterization</u> of $G_{\mathbb{Q}}$ in GT (i.e., by comparison to the characterizations obtained in [CbGal]) via a <u>single, relatively simple condition</u>, namely, the <u>FICSP-property</u>. (Of course, the ideal result would be "<u>zero conditions</u>", i.e., $G_{\mathbb{Q}} = GT$, but this has not yet been achieved!)

- · Next, fix a <u>prime number</u> p. For $\square \in \{\dagger, \ddagger\}$, let
 - · K^{\square} be a finite extension of \mathbb{Q}_p ;

 - · \overline{K}^{\square} an algebraic closure of K^{\square} ; · X^{\square} a hyperbolic curve of type $(0, r^{\square})$ over K^{\square} .

For $n \geq 1$, write X_n^{\square} for the *n*-th configur. space assoc'd to X^{\square} ;

$$X^{\square}_{\overline{K}^{\square}} \quad \stackrel{\mathrm{def}}{=} \quad X^{\square} \times_{K^{\square}} \overline{K}^{\square}, \qquad (X^{\square}_n)_{\overline{K}^{\square}} \quad \stackrel{\mathrm{def}}{=} \quad X^{\square}_n \times_{K^{\square}} \overline{K}^{\square};$$

 $\Pi_{X^{\square}}, \ \Pi_{X_{n}^{\square}}$ for the respective étale fundamental groups of $X_{\overline{\kappa}^{\square}}$, $(X_n^{\sqcup})_{\overline{K}^{\square}}$. Fix an isomorphism of profinite groups

$$\alpha:\Pi_{X^{\dagger}} \stackrel{\sim}{\to} \Pi_{X^{\ddagger}}.$$

Then we shall say that α is <u>cuspidalizable</u> if, for some integer $n \geq 2$, there exists an isomorphism of profinite gps. $\Pi_{X_n^{\dagger}} \stackrel{\sim}{\to} \Pi_{X_n^{\dagger}}$ that lifts α , rel. to the morphisms $\Pi_{X_{\square}} \twoheadrightarrow \Pi_{X^{\square}}$ (for $\square \in \{\dagger, \ddagger\}$) induced by the natural projections to the first factor. We shall say that α is <u>graphic</u> if it induces a bijection between the resp. collections of decomposition groups of irred. comps./nodes of the special fibers of stable models of corresponding (relative to α) finite étale coverings of $\Pi_{X^{\dagger}}$, $\Pi_{X^{\ddagger}}$. If $r^{\dagger}=3$, then we shall write

$$GT_p \subseteq GT \subseteq Out(\Pi_{X^{\dagger}})$$

for the subgroup of *graphic* outer automorphisms, i.e., in essence (cf. [RNSPM], Theorem G), <u>Yves André's p-adic version</u> of GT. Then it follows from the theory of <u>resolution of nonsingularities</u> (RNS) (cf. |RNSPM|, which builds on earlier results due to Akio Tamagawa and Emmanuel Lepage) that

$$\mathrm{GT}_p$$
 satisfies the \underline{COF} (\Rightarrow \underline{FICSP} -) $\underline{propert}y$.

In particular, it follows from the theory of [ArGT], §4, §5, that the following results — the first of which (and, to a lesser extent, the second, as well) settles an <u>important outstanding question</u> of <u>André</u> (i.e., the p-adic analogue of " $G_{\mathbb{Q}} = GT$ ") that dates back to around the year 2000 — hold:

Corollary C [Expected] (Algebraicity of GT_p monodromy). It holds (cf. [ArGT], §4) that $G_{\mathbb{Q}_p} = GT_p$.

Corollary D [Expected] (Tempered absolute anabelian result). There is a <u>natural bijective</u> correspondence (cf. [ArGT], $\S 5$) between the set of <u>graphic cuspidalizable</u> outer automorphisms of profinite groups

$$\Pi_{X^{\dagger}} \stackrel{\sim}{\to} \Pi_{X^{\ddagger}}$$

(i.e., where one does <u>not</u> consider compatibility with any outer Galois actions!) and the set of isomorphisms of \mathbb{Q}_p -schemes

$$X_{\overline{K}^{\dagger}}^{\dagger} \stackrel{\sim}{\longrightarrow} X_{\overline{K}^{\ddagger}}^{\ddagger}.$$

 $\cdot\,$ The theory discussed above may be summarized as follows:

$\underline{\mathbb{C}\mathrm{Tch}}$	<u>IUT</u>	$\underline{\mathrm{GT}}$
$egin{aligned} extbf{distinct} \ extbf{holomorphic} \ extbf{structures} & \mathcal{O}^{\mathfrak{H}_i}, \ extbf{for} & i=1,2, ext{ on} \ extbf{same} & ext{underlying} \ ext{topological} \ ext{surface} \end{aligned}$	distinct ring/arithmetic holomorphic structures on opposite sides of the Θ-link	$egin{aligned} extbf{distinct} \ extbf{ring structures} \ extbf{corresponding to} \ extbf{distinct} \ extbf{conjugates} \ extbf{of} \ G_{\mathbb{Q}} \ ext{inside GT} \end{aligned}$
$egin{array}{c} \mathbf{embedding} \ \mathrm{of} \ \mathcal{O}^{\mathfrak{H}_i} \mathrm{'s\ into} \ \mathbf{common} \ \mathbf{container} / \ \mathbf{domain} \ \mathcal{O}^{\mathfrak{R}} \ \mathrm{via} \ \mathbf{Teichm\"{u}ller} \ \mathbf{maps} \end{array}$	multiradial rep., up to mild indets., yields common container for distinct ring/arith. hol. strs. via Galois evaluation, miraculous rotation Θ-link " ~ " log-link involving log-invars. via a rotation \[\infty \ " \ \ " \ \ \" \ \ \" \ \ \" \ \ \ \	embedding of distinct ring strs. into $\operatorname{Fn}(-,-)$ via analysis of $\operatorname{GT-dec.}$ groups, together with embedding $\operatorname{GT} \hookrightarrow \operatorname{Out}(\Pi^0_X)$ via a combinatorial rotation \boxtimes " \hookrightarrow " \boxminus (i.e., inf. tower of config. spaces), combinatorial anab. geo., coord. fns.

References

[IUAni1] E. Farcot, I. Fesenko, S. Mochizuki, *The Multiradial Representation of Inter-universal Teichmüller Theory*, animation available at the following URL:

https://www.kurims.kyoto-u.ac.jp/~motizuki/IUT-animation-Thm-A-black.wmv

[IUAni2] E. Farcot, I. Fesenko, S. Mochizuki, Computation of the log-volume of the q-pilot via the multiradial representation, animation available at the following URL:

https://www.kurims.kyoto-u.ac.jp/~motizuki/2020-01%20Computation%20of%20q-pilot%20(animation).mp4

- [IUTchI] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge Theaters, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 3-207.
- [IUTchII] S. Mochizuki, Inter-universal Teichmüller Theory II: Hodge-Arakelov-theoretic Evaluation, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 209-401.
- [IUTchIII] S. Mochizuki, Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-theta-lattice, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 403-626.
- [IUTchIV] S. Mochizuki, Inter-universal Teichmüller Theory IV: Log-volume Computations and Set-theoretic Foundations, *Publ. Res. Inst. Math. Sci.* **57** (2021), pp. 627-723.
 - [Alien] S. Mochizuki, The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmüller Theory, Inter-universal Teichmuller Theory Summit 2016, RIMS Kōkyūroku Bessatsu B84, Res. Inst. Math. Sci. (RIMS), Kyoto (2021), pp. 23-192; available at the following URL:

https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf

[EssLgc] S. Mochizuki, On the essential logical structure of inter-universal Teichmüller theory in terms of logical AND "\"\"\"/logical OR "\" " relations: Report on the occasion of the publication of the four main papers on inter-universal Teichmüller theory, preprint available at the following URL:

https://www.kurims.kyoto-u.ac.jp/~motizuki/Essential%20Logical%20Structure%20of%20Inter-universal%20Teichmuller%20Theory.pdf

[CbGT] Y. Hoshi, A. Minamide, S. Mochizuki, Group-theoreticity of Numerical Invariants and Distinguished Subgroups of Configuration Space Groups, *Kodai Math. J.* **45** (2022), pp. 295-348.

- [CbGal] Y. Hoshi, S. Mochizuki, S. Tsujimura, Combinatorial construction of the absolute Galois group of the field of rational numbers, *J. Math. Sci. Univ. Tokyo.* **32** (2025), pp. 1-125.
- [RNSPM] S. Mochizuki, S. Tsujimura, Resolution of Nonsingularities, Point-theoreticity, and Metric-admissibility for p-adic Hyperbolic Curves, RIMS Preprint 1974 (June 2023).
 - [ArGT] S. Mochizuki, S. Tsujimura, Topics surrounding the arithmeticity of the Grothendieck-Teichmüller Group, manuscript in preparation.
 - [Wtbe] H. Watanabe, Belyi injectivity for outer representations on certain quotients of étale fundamental groups of hyperbolic curves of genus zero, *Hiroshima Math. J.* **53** (2023), pp. 63-85.

